Die Hemmwirkung von SiO₃²⁻ und AsO₂⁻ bei der Luftoxydation von gefälltem Eisen(II)-carbonat

Kurze Mitteilung

Von

Alfons Krause, mitbearbeitet von W. Skupinova

Aus dem Institut für Anorganische Chemie der Universität Poznań

(Eingegangen am 31. März 1965)

Vor kurzem wurde berichtet¹, daß gefälltes Eisen(II)-carbonat im Gegensatz zu Fe²⁺-Ionen mit Luftsauerstoff leicht oxydierbar ist. Dabei schien die Vermutung naheliegend, daß es sich, wenn auch in geringem Ausmaß, um eine basische Fällung handelt, indem das Eisen(II)-carbonat z. T. mit OH-Wirkgruppen versehen ist. Diese OH-Wirkgruppen sind durch den molekularen Sauerstoff ohne weiteres dehydrierbar, sofern sie nicht durch entsprechende Fremdbeimengungen zuvor neutralisiert bzw. blockiert werden. Diese Annahme ließ sich in der Tat bestätigen, wobei als blockierende Substanzen As₂O₃ und Na₂SiO₃ verwendet wurden. Letzteres hatte sich übrigens schon anderweitig in dieser Eigenschaft gut bewährt². Wir konnten zwar die FeCO₃-Oxydation nicht vollkommen stoppen, doch sind die Ergebnisse trotz alledem als zufriedenstellend zu bezeichnen (Tab. 1).

Tabelle 1. Luftoxydation bei 18° von FeCO₃-Gel (= 17,9 cm³ 0,1 n-KMnO₄) bei Zusatz von Na₂SiO₃ oder As₂O₃

$rac{ m Na_2SiO_3}{ m mg}$	Verbrauch an 0,1n-KMnO ₄ in cm ³	As ₂ O ₃ mg	Verbrauch an 0,1 <i>n</i> -KMnO, in cm ³
0	0,0	0	0,0
0,5	4,6	0,5	6,6
6	5,1	6	6,6
20	5,7	20	3,5
50	6.2	50	1,8

¹ A. Krause, Mh. Chem. **96**, 682 (1965).

 $^{^2}$ Vgl. A. Krause und J. Leżuchowska, Roczniki chem. (Ann. Soc. chim. Polonorum ${\bf 32},\, 29 \, (1958).$

Zwecks Ausführung der Versuche löst man $0.5 \text{ g FeSO}_4 \cdot 7 \text{ H}_2\text{O}$ in 100 cm^3 destill. Wasser und versetzt die nötigenfalls filtrierte Lösung mit 36,0 cm³ 0.1n-Na₂CO₃ (mol. Verh. FeSO₄: Na₂CO₃ = 1:1). Nach Zusatz von Na₂SiO₃oder As₂O₃-Lösung einer gegebenen Konzentration wird das Reaktionsgemisch mit einem kräftigen Luftstrom (1,7 l/Min.) 15 Min. bei 18° behandelt. In dieser Zeit wird das grüne FeCO₃-Gel, falls keine Fremdbeimengungen vorhanden sind, vollständig oxydiert unter Gelbfärbung.

Bei Anwesenheit von geringen Mengen Na₂SiO₃ oder As₂O₃ hingegen ist die Oxydation unvollständig, was durch Titration mit 0,1n-KMnO₄ nach Auflösung des bräunlich-grünen Gels in H₂SO₄ festgestellt wurde (Tab. 1). In dieser Tabelle ist bei den Zahlenwerten, die die blockierende Wirkung des As₂O₃ betreffen, dessen Eigenverbrauch an Permanganat in Abrechnung gebracht.

Orientierungshalber sei noch kurz erwähnt, daß der manganometrische Titer der ursprünglichen FeSO₄-Lösung, die für Fällung von FeCO₃ bereitgestellt wurde (s. oben), 17,9 cm³ 0,1n-KMnO₄ beträgt. Nach Ausfällung des FeCO3 verbraucht man, ohne daß man das Gel irgendwie weiter behandelt, nach dessen Auflösung in H₂SO₄, ebenfalls 17,9 cm³ 0,1n-KMnO₄.

Aus Tab. 1 ist ersichtlich, daß schon sehr geringe Na₂SiO₃-Mengen (0.5 mg) die Oxydation des FeCO₃ deutlich verlangsamen. Daraus, daß die 100fache Na₂SiO₃-Menge kaum wirksamer ist, folgt, daß es sich hierbei um eine echte Blockade der relativ wenigen aktiven Zentren auf der Geloberfläche handelt, was mit einer normalen (stöchiometrischen) chemischen Umsetzung natürlich nichts zu tun hat. Beim As₂O₃ liegen die Dinge etwas anders, da kleine Mengen blockieren, große jedoch nicht. Man kann das so erklären, daß geringe Mengen der arsenigen Säure genügen, um die aktiven Stellen, d. h. die wenigen OH-Wirkgruppen an der FeCO₃-Oberfläche zu neutralisieren und deren Dehydrierung zu bremsen. Ein Überschuß an H+AsO₂- greift überdies das FeCO₃ als Ganzes, unter Bildung von Eisen(II)-arsenit an, das gegen Oxydation nicht beständig ist. In diesem Zusammenhang wurde noch ein weiterer Versuch ausgeführt, der das aus FeSO₄- mit Na-Arsenitlösung stöchiometrisch gefällte Eisen(II)-arsenit betraf. Es zeigte sich, daß bei Luftoxydation des ursprünglich lebhaft grünen Niederschlags [Eisen(II)arsenit] keine Hemmwirkung zu beobachten ist, da er nach 15 Min. schmutziggelb wurde.